Gepubliceerd op
29 maart 2019
door
Lars van Heijst.
Bijgewerkt op
28 juli 2023.
De normale verdeling is een kansverdeling die beschrijft hoe data verspreid zijn. Normaal verdeelde data hebben de volgende eigenschappen:
- Observaties rond het gemiddelde zijn het waarschijnlijkst
- Hoe verder waardes van het gemiddelde af liggen, hoe onwaarschijnlijker het is deze waarden te observeren
- Waardes boven en onder het gemiddelde zijn even waarschijnlijk.
Verder lezen: Normale verdeling onderzoeken, begrijpen en interpreteren
Gepubliceerd op
4 januari 2019
door
Lars van Heijst.
Bijgewerkt op
13 maart 2023.
Voor het rapporteren van statistische onderzoeksresultaten in je scriptie bestaan richtlijnen, bijvoorbeeld voor de schrijfwijze van afkortingen, symbolen, vergelijkingen en formules. Dit artikel volgt de richtlijnen van de APA-stijl.
Verder lezen: Schrijfwijze van statistische resultaten
Gepubliceerd op
14 december 2018
door
Lars van Heijst.
Bijgewerkt op
11 januari 2023.
Bij het uitvoeren van statistische toetsen zoals een regressieanalyse, t-toets of ANOVA worden vaak verschillende statistische aannames gedaan. Het is belangrijk om deze aannames te testen, want pas als deze kloppen kun je de juiste conclusies trekken.
In dit artikel leggen we de betekenis van de meest voorkomende aannames uit en laten we zien hoe je deze kunt testen.
Verder lezen: Aannames bij statistische toetsen
Gepubliceerd op
1 november 2018
door
Lars van Heijst.
Bijgewerkt op
5 september 2022.
ANOVA staat voor Analysis of Variance, oftewel variantieanalyse, en wordt gebruikt om gemiddelden van meer dan twee groepen met elkaar te vergelijken. Het is een uitbreiding van de t-toets, die het gemiddelde van maximaal twee groepen met elkaar vergelijkt.
Voorbeeld: Je wilt weten of er een verschil in lengte bestaat tussen voetballers, turners, en volleyballers. Je vraagt aan al deze sporters hun lengte en gebruikt vervolgens een ANOVA om te kijken of de gemiddelde lengte van de groepen sporters verschilt.
Verder lezen: ANOVA Uitvoeren en Interpreteren (Stappenplan met GIF’s)
Gepubliceerd op
1 november 2018
door
Lars van Heijst.
Bijgewerkt op
8 augustus 2022.
De t-test, ook wel t-toets genoemd, wordt gebruikt om de gemiddelden van maximaal twee groepen met elkaar te vergelijken. Je kunt de t-test bijvoorbeeld gebruiken om te analyseren of moedertaalsprekers gemiddeld sneller spreken dan niet-moedertaalsprekers.
Als je de gemiddelden van meer dan twee groepen met elkaar wilt vergelijken, kun je een ANOVA of meervoudige regressieanalyse met dummy’s gebruiken.
Verder lezen: T-test begrijpen, uitvoeren (SPSS) en het resultaat interpreteren
Gepubliceerd op
1 november 2018
door
Lars van Heijst.
Bijgewerkt op
9 maart 2023.
Regressieanalyse wordt gebruikt om het effect te bepalen van een (of meerdere) verklarende variabele(n), zoals lengte of leeftijd, op een afhankelijke variabele zoals gewicht.
Je kunt regressieanalyse gebruiken om:
- Samenhang tussen twee variabelen te bepalen (leeftijd en waarde van een auto)
- Verandering van de afhankelijke variabele te voorspellen (waarde van een auto naarmate deze ouder wordt)
- Toekomstige waarde te voorspellen (waarde van een zes jaar oude auto)
Verder lezen: Regressieanalyse uitvoeren en interpreteren
Gepubliceerd op
22 oktober 2018
door
Lars van Heijst.
Bijgewerkt op
27 oktober 2021.
Cronbach’s alpha (of: Cronbachs alfa in het Nederlands) wordt gebruikt om de mate van samenhang (interne consistentie) tussen meerdere enquêtevragen te meten.
Voorbeeld:
Je wilt klanttevredenheid meten met drie vragen: “Hoe schoon vind je de winkel?”, “Ben je tevreden met het assortiment?” en “Hoe waardeer je de behulpzaamheid van het personeel?”. Cronbach’s alpha vertelt je of deze vragen wel echt de klanttevredenheid meten.
Je test Cronbach’s alpha vaak met data uit een zogenaamde “pre-test” of “pilot”. Tijdens een pre-test laat je een relatief kleine groep respondenten de vragenlijst testen voordat je deze door veel respondenten laat invullen.
Verder lezen: Cronbach’s alpha in SPSS: Berekenen en interpreteren
Gepubliceerd op
12 oktober 2018
door
Lars van Heijst.
Bijgewerkt op
22 augustus 2022.
Correlatie geeft de mate van samenhang tussen twee variabelen weer, ofwel in hoeverre twee variabelen elkaar beïnvloeden. De correlatie wordt uitgedrukt in de correlatiecoëfficiënt. De waarde van de correlatiecoëfficiënt ligt altijd tussen -1 en +1.
Een positieve correlatiecoëfficiënt dicht bij de waarde 1 geeft bijvoorbeeld aan dat langere studenten ook zwaarder zijn. Een correlatiecoëfficiënt dichter bij de 0 geeft aan dat het verband tussen gewicht en lengte zwakker is.
Verder lezen: Correlatie Begrijpen en Berekenen met SPSS en Excel | Stappenplan
Gepubliceerd op
2 oktober 2018
door
Lars van Heijst.
Bijgewerkt op
13 maart 2023.
De standaarddeviatie of standaardafwijking geeft de mate van spreiding aan in bepaalde data. Het geeft aan hoezeer de geobserveerde waardes afwijken van het gemiddelde.
Stel dat je de leeftijden van vijf studenten hebt verzameld. De standaarddeviatie geeft dan een beeld van de leeftijdsverschillen tussen deze vijf studenten.
Een kleine standaarddeviatie duidt erop dat de studenten uit dezelfde (leeftijds)groep komen.
Verder lezen: Standaarddeviatie (Voorbeelden) | Berekenen, Interpreteren & Rapporteren